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Abstract

The probability density functions (PDFs) of contact forces in anisotropic, cohesionless and frictional granular

materials are studied numerically and theoretically. Using discrete element simulations of biaxial deformation of a large

two-dimensional assembly consisting of 200,000 disks, it is observed that the PDFs for the normal and tangential

components of the contact forces depend significantly on contact orientation. The PDFs exhibit exponential decay and

the PDF for the tangential component of the contact forces is not always symmetrical with respect to zero tangential

force. The shape of the PDF for the normal component of the contact forces changes with shear strain. A qualitative

explanation for this change is given that is related to the biaxial deformation mechanism in which the disrupted contacts

are predominantly oriented in the direction of the minor principle stress.

A maximum entropy method is employed to study these PDFs theoretically, using a prescribed stress tensor as

constraint. It is found that the theoretical results correspond qualitatively to many of the results obtained from the

discrete element simulations. Discrepancies between theory and simulations are attributed to the fact that the kine-

matics have not been taken into account in the theory.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, there has been considerable interest in the probabilistic characteristics of contact forces in

granular materials in quasi-static equilibrium. These characteristics are important in obtaining a more

profound understanding of the behaviour of granular materials. Furthermore, this knowledge may be of

more practical interest, such as in probabilistic continuum-mechanical models of failure and fracture. In a

probabilistic framework the contact forces are described by the probability density function (PDF for

short). Such PDFs have been studied experimentally, theoretically and numerically.

The experimental studies by Mueth et al. (1998), Løvoll et al. (1999), Makse et al. (2000) and Blair et al.

(2001) show that in isotropic assemblies the PDF for the normal component of the contact forces generally
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exhibits exponential decay. However, for high pressures Makse et al. (2000) observed a Gaussian-type

PDF.

Theoretical studies of PDFs for contact forces generally employ two types of methods, lattice-type

methods and maximum entropy methods. Lattice-type methods were developed by Coppersmith et al.
(1996), Socolar (1998) and Nguyen and Coppersmith (2000). They assume a probabilistic propagation of

contact forces that does not seem to reflect the statically indeterminate, structure-like nature of granular

materials where elastic effects are significant. An important result of the lattice model by Coppersmith et al.

(1996) is that the exponential decay of the PDF for the normal component of the contact forces can be

predicted theoretically. A maximum entropy method for quasi-static deformation of granular materials was

first proposed by Rothenburg (1980). It was subsequently used by Bagi (1997) and Kruyt and Rothenburg

(2002b) to study the PDF for the contact forces. Bagi (1997) showed that the PDF exhibits exponential

decay, while Kruyt and Rothenburg (2002b) obtained the PDFs for the normal and tangential components
of the contact forces for isotropic assemblies. These PDFs demonstrate the importance of dry Coulomb

friction for cohesionless granular materials.

Numerous numerical studies of the PDFs for the contact forces have been performed, for example by

Radja€ıı et al. (1996), Thornton (1997), Thornton and Antony (1998), Makse et al. (2000), Antony (2000)

and Kruyt and Rothenburg (2002b). These studies generally use the discrete element method, as proposed

by Cundall and Strack (1979). Such discrete element simulations are very suitable in micromechanical

studies, since they can provide results which cannot be obtained easily by direct measurements, such as

forces at internal contacts and tangential forces in particular. The PDFs obtained from these simulations
show qualitative agreement with those obtained experimentally. Quantitative differences between the results

of the various simulations may be due to the different parameters used, such as packing density, stress level

and the contact constitutive relation.

The previous studies mostly focused on the PDF for the normal component of the contact forces in

isotropic assemblies. The emphasis of this study will be on PDFs for the normal and the tangential com-

ponent of the contact forces in anisotropic assemblies. To this end two-dimensional discrete element

simulations are performed of biaxial deformation of a large assembly of 200,000 disks. The biaxial de-

formation results in induced anisotropy of the assembly (Rothenburg and Bathurst, 1989). The PDFs for
the contact forces are also studied theoretically, using a maximum entropy method.

The outline of this study is as follows. In Section 2 the various micromechanical quantities are defined

and the micromechanical expression for the average stress tensor is given. In Section 3 the discrete element

simulations are described, including the contact constitutive relation that was used. In Section 4 the PDFs

are given for the normal and tangential components of the contact forces, as determined from the discrete

element simulations. Section 5 deals with the theoretical study of the PDF for the contact forces, using a

maximum entropy method. Finally, findings from this study are discussed.

The usual sign convention from soil mechanics is employed here, which means that compressive stresses
and strains are considered positive. Furthermore, the summation convention is used, by which a summation

is implied over repeated subscripts.

2. Micromechanics

Micromechanics of quasi-static deformation of granular materials deals with the study between micro-

scopic characteristics and macroscopic characteristics. For assemblies of semi-rigid particles the micro-

scopic level is that of contacts, where the quantities of interest are force and relative displacement between

particles. The macroscopic quantities of interest are the average stress and strain tensors. An important

objective of micromechanics is to formulate macroscopic constitutive relations in terms of microscopic
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quantities, such as the contact constitutive relation that relates the force and the relative displacement at the

contact.

The force at the contact that is exerted by particle q on particle p is denoted by f pq
i . In the two-

dimensional case considered here the relative displacement Dpq
i between particles in contact is defined by

Dpq
i ¼ ½Uq

i þ ejixqrqpj � � ½Up
i þ ejixprpqj � ð1Þ

where Up
i is the displacement of the centre of particle p, xp is its rotation, eij is the two-dimensional per-

mutation tensor and rpqi is the vector from the centre of particle p to the point of contact between particles p
and q, see also Fig. 1. Also shown in Fig. 1 are the unit normal vector npqi , the unit tangential vector t

pq
i at

the contact point and the branch vector lpqi . The branch vector is the vector connecting the centres of the

particles that are in contact. The orientation of a contact is denoted by hpq, such that npqi ¼ fcos hpq;
sin hpqgT.

The primary statistical quantities describing the contact geometry of the assembly of particles are co-
ordination number C and the contact distribution function SðhÞ. Coordination number is the average

number of contacts per particle. For isotropic assemblies it is a measure of the packing density of the

assembly, see Kruyt and Rothenburg (1996). The contact distribution function (Horne, 1965) is defined

such that SðhÞDh is the fraction of contacts with orientation h in the interval ðh; h þ DhÞ. An example of an

anisotropic contact distribution function, as determined from results of a discrete element simulation, is

shown in Fig. 2.
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Fig. 1. Geometrical quantities associated with two particles in contact.
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Fig. 2. Polar plots of the contact distribution function and the group averages of normal and tangential contact forces.
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The most important macroscopic quantities are the stress tensor rij and the strain tensor eij. The micro-

mechanical expression for the average stress tensor in terms of contact forces f c
i and branch vectors lci is

(see for example, Drescher and de Josselin de Jong, 1972; Strack and Cundall, 1978; Rothenburg and

Selvadurai, 1981; Mehrabadi et al., 1982)

rij ¼
1

A

X
c2C

f c
i l

c
j ð2Þ

where the summation is over the contacts c in the set C in the region of interest with area A.
From continuum-mechanical considerations it is expected that points that are separated by a vector

li ¼ fl cos h; l sin hgT show a relative displacement eijlj. This means that the relative displacement depends

on orientation h. Therefore it is logical to group contacts with similar orientations and to analyse group

averages for relative displacements and forces at contacts (Rothenburg and Bathurst, 1989; Bathurst and

Rothenburg, 1990). The group averages for the normal and tangential forces are denoted by �ffnðhÞ and �fftðhÞ,
respectively. Polar plots of such group averages, as determined from results of a discrete element simula-

tion, are shown in Fig. 2.

For analytical manipulations it is advantageous to transform a sum over contacts of a generic contact

quantity /c to an integral form. Using the definitions of the contact distribution function SðhÞ and the
group average �//ðhÞ, this transformation is established by

1

A

X
c2C

/c ¼ mA

Z 2p

0

SðhÞ �//ðhÞdh ð3Þ

where mA is the contact density, i.e. the number of contacts per area.

Fig. 2 shows that the group averages of the contact forces, and hence the statistical characteristics in

general, depend significantly on contact orientation h. For a complete description of the probabilistic

characteristics of the contact forces it is therefore necessary to consider the conditional PDF Pf ðf jhÞ of the
contact force given the contact orientation h.

The group average �//ðhÞ of a generic contact quantity /c is determined from the PDF Pf ðf jhÞ by

�//ðhÞ ¼
Z
f

/ðf ; hÞPf ðf jhÞdf ð4Þ

Since Pf ðf jhÞ is a PDF, it must satisfy the normalising condition

�11ðhÞ ¼ 1 ð5Þ

The overall average h/i is finally defined by integrating the group average over all contact orientations h

h/i ¼
Z 2p

0

SðhÞ �//ðhÞdh ð6Þ

Using this notation, the micromechanical expression (2) for the stress tensor becomes

rij ¼ mAhfilji ð7Þ

3. Discrete element simulations

In this section the contact constitutive relation is described that is used in the discrete element simula-
tions. The basic characteristics of the initial assembly are also given, and the biaxial deformation that is

imposed on this assembly is described. The evolution with shear strain of the macroscopic shear strength
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and volumetric strain are shown, as well as that of coordination number and contact anisotropy that to-

gether describe the primary statistics of the contact geometry.

3.1. Contact constitutive relation and initial assembly

The contact constitutive relation used in the discrete element simulations is basically that employed by

Cundall and Strack (1979). It involves elastic and Coulomb frictional effects. The elastic component of the

constitutive relation is described by two linear springs in the normal and tangential direction at the contact

with spring constants kn and kt, respectively. Hence, the normal component f c
n and the tangential com-

ponent f c
t of the contact force are related to the normal component Dc

n and the tangential component Dc
t of

the relative displacement at the contact by

f c
n ¼ knD

c
n f c

t ¼ ktD
c
t ð8Þ

with the restriction that only compressive normal forces are allowed. If the normal force were to become

negative, the contact is considered to be broken for cohesionless materials. Furthermore, the tangential
force is limited by Coulomb friction, i.e. jf c

t j6 lf c
n where l is the friction coefficient. The range of ad-

missible contact forces is shown in Fig. 3.

The initial, isotropic assembly consists of 200,000 disks from a fairly wide, lognormal particle-size

distribution with average particle radius Ravg. The initial packing density, i.e. the total area occupied by

the particles divided by the area of the assembly, is m ¼ 0:850. The initial coordination number is C ¼ 4:07.
The hydrostatic confining stress r is such that r=ðknRavgÞ ¼ 5� 10�3 and the stiffness ratio kt=kn ¼ 0:5. The
friction coefficient l that is mainly considered is l ¼ 0:5, while l ¼ 0:1 and 0.3 are used in some additional

simulations.
The procedure employed to create the fairly dense, isotropic initial assembly consists of four steps. The

first step involves the determination of random initial positions for the disks such that there are no contacts.

In the second step this extremely loose assembly is slowly compacted with zero friction coefficient l until the

prescribed hydrostatic confining stress r is obtained. In the third step the assembly is isotropically expanded

by 1%, leading to a reduction in confining stress r. In the fourth step, the assembly is once again com-

pressed isotropically with the friction coefficient l set to the lowest value considered (l ¼ 0:1) until the
prescribed hydrostatic confining stress r is obtained. These last two steps in the creation of the initial

assembly are performed in order to allow tangential forces to develop.
The case considered here is that without body forces acting on the particles, since the presence of body

forces would lead to a heterogeneous average stress field.

fn

ft

ft µfn–=

ft µfn= Region of admissible forces

Compressive normal forces
Tensile normal forces

Fig. 3. Region of admissible contact forces.
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3.2. Biaxial deformation, macroscopic behaviour and group averages

The isotropic initial assembly is subjected to biaxial deformation, as sketched in Fig. 4. A compressive

(principal) strain e1 is imposed in the horizontal direction, while the (principal) stress r2 in the vertical

direction is kept constant. For this type of deformation r1 in the horizontal direction will be the major

principle stress, while r2 in the vertical direction will be the minor principle stress. Pressure p, shear stress q,
volumetric strain eV and shear strain eS are then defined by

p ¼ 1
2
ðr1 þ r2Þ q ¼ 1

2
ðr1 � r2Þ

eV ¼ e1 þ e2 eS ¼ e1 � e2
ð9Þ

The maximum strain e1 that was applied in the simulations is e1 ¼ 0:10. The simulations were performed

using periodic boundaries (Cundall, 1986) in order to minimize boundary effects.
The macroscopic shear strength q=p and the volumetric strain eV that are observed from the simulation

are shown in Fig. 5. The shear strength increases from zero in the initial isotropic state to a peak strength,

and then gradually decreases. For small strains the volumetric strain corresponds to (elastic) compression

of the material, while for larger strains the material dilates. This type of behaviour is characteristic for

granular materials in a fairly dense initial packing.

From the simulations the contact distribution function SðhÞ and the group averages of the normal forces
�ffnðhÞ and of the tangential forces �fftðhÞ could be determined, see Fig. 2 for an example.

The results can be represented by Fourier series (Rothenburg and Bathurst, 1989; Bathurst and Roth-
enburg, 1990)

SðhÞ ffi 1

2p
½1þ ac cos 2ðh � h0Þ� ð10Þ

�ffnðhÞ ffi f0½1þ an cos 2ðh � h0Þ� �fftðhÞ ffi �f0at sin 2ðh � h0Þ ð11Þ

Here h0 is the direction of the major principle stress (h0 ¼ 0� for the configuration shown in Fig. 4), which is

assumed to coincide with the direction of contact anisotropy. Parameter ac describes the anisotropy of the

contact distribution function SðhÞ. Parameter f0 is a measure of the average normal force, an is a measure of

the anisotropy in the distribution of the normal forces and at is a measure of the magnitude of the tan-
gential forces, relative to the normal forces.

1

2

σ2 constant=

σ2 constant=

ε1 ε1

Initial boundary

Current boundary

Fig. 4. Schematic of biaxial deformation.
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As was shown by Rothenburg and Bathurst (1989), see also Bathurst and Rothenburg (1990), the
parameters ac, an and at are related to the shear strength q=p by the stress–force–fabric relation

q
p
ffi 1

2
½ac þ an þ at� ð12Þ

Since the strains correspond to compression in the horizontal direction and to extension in the vertical

direction, it is expected that the contacts that are broken during the biaxial deformation are predominantly

oriented in the vertical direction. This is manifested by changes in coordination number C and contact

anisotropy ac, see Fig. 6. Coordination number C gradually decreases until it reaches an approximately

constant value. Contact anisotropy ac increases from zero in the initial isotropic state until it reaches a
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Fig. 5. Evolution with shear strain eS of shear strength q=p and volumetric strain eV for discrete element simulation with friction

coefficient l ¼ 0:5.
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Fig. 6. Evolution with shear strain eS of coordination number C and parameters ac, an and at for discrete element simulation with

friction coefficient l ¼ 0:5.

N.P. Kruyt / International Journal of Solids and Structures 40 (2003) 3537–3556 3543



peak, and then gradually decreases. Note that the strains corresponding to peak strength q=p and peak

anisotropy ac do not coincide. The other parameters an and at show a behaviour that is similar to that of ac.

4. Probability density functions of contact forces

Since the assembly consists of 200,000 particles, it is possible to determine the conditional PDFs for the

contact forces (given the contact orientation h) with reasonable accuracy. The marginal PDFs for the

normal and tangential forces are denoted by PnðfnjhÞ and PtðftjhÞ, respectively. To determine these for a

fixed contact orientation h, all contacts whose orientation is in an interval with a width of 10� around this

value were used as data to estimate the PDFs. Histograms of these were determined by dividing the ranges

of contact forces into 50 bins.
The PDFs for the contact forces are conveniently shown in terms of the nondimensional normal force n

and the nondimensional tangential force g. These are defined by

n ¼ fn
�ffn

n P 0

g ¼ ft
l�ffn

�1 < g < 1
ð13Þ

The parameter qðhÞ, relating group averages of normal and tangential forces, is defined by

qðhÞ ¼
�fftðhÞ

l�ffnðhÞ
ð14Þ

and hence �1 < qðhÞ < 1.

Results for the PDFs PnðnjhÞ for the nondimensional force n and PgðgjhÞ for the nondimensional tan-

gential force g are shown for the initial isotropic assembly (eS ¼ 0:0), for the state corresponding to peak

strength (eS ¼ 0:047) and for the state corresponding to large strain (eS ¼ 0:227). For the initial isotropic

state PnðnjhÞ and PgðgjhÞ are independent of h. For the states corresponding to peak strength and large

strain, the PDFs have been determined for contact orientations h ¼ 0�, h ¼ 45� and h ¼ 90�.
The PDFs in the initial isotropic state are shown in Fig. 7. The PDF Pn for the normal forces does not

equal zero for n ¼ 0. The PDF Pg for the tangential forces is symmetrical around g ¼ 0 and it is rather

narrow. These PDFs closely resemble those given by Kruyt and Rothenburg (2002b), although quantitative

differences are present in the PDF Pg for the tangential force. These are caused by the differences in packing

density and confining stress.

The PDFs for the states that correspond to peak strength and to large strain are shown in Fig. 8. The

PDFs at peak strength are shown in black, while the PDFs at large strain are shown in grey. Except for

h ¼ 0�, the PDFs at peak strength and at large strain are very similar. The PDFs for h ¼ 0� are qualitatively
the same as those in the initial isotropic state. The PDFs Pn for the normal forces at h ¼ 45� and h ¼ 90� are
qualitatively different from that in the initial state. The probability density at n ¼ 0 has increased. For

h ¼ 0� and h ¼ 45� the peak of the PDF Pn is found at n between 0.5 and 1.0, while for h ¼ 90� the peak of

the PDF is found at n ¼ 0. In comparison with the initial isotropic state, the PDFs Pg for the tangential

forces are much wider. For h ¼ 45� the PDF Pg is no longer symmetrical around g ¼ 0.

Parameter q, as defined in (14), equals zero for h ¼ 0� and h ¼ 90�. For h ¼ 45�, we have q ¼ �0:35 at

peak strength and q ¼ �0:18 at large strain.

For large forces (n � 1 and jgj � 1) the PDFs exhibit exponential decay, i.e.

ln Pn ffi �rnn þ Cn ln Pg ffi �rgjgj þ Cg ð15Þ
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where rn and rg are the decay rates. For the isotropic state this exponential decay was shown experimentally

by Mueth et al. (1998) and Løvoll et al. (1999), while Radja€ıı et al. (1996) and Kruyt and Rothenburg

(2002b) observed this from simulations. Fig. 9 for the PDFs at peak strength and h ¼ 45� shows that
exponential decay of the contact forces also occurs in anisotropic assemblies. Here the decay rates are

rn ffi 2:8, rg ffi 3:2 for negative g and rg ¼ 4:6 for positive g.
The most notable differences between the PDF Pg for the tangential forces in the initial isotropic state

and the other anisotropic states are that in the anisotropic states it is much wider and that it no longer is

symmetrical around g ¼ 0 for h ¼ 45�. The PDFs are wider in the anisotropic states due to the biaxial

deformation mechanism which leads to greatly increased relative displacements between particles, and

hence to a far wider range of tangential forces. For h ¼ 45� the PDF is asymmetrical since the group

average tangential force �fft is not zero for h ¼ 45�, see Fig. 2. Fig. 2 also shows that for h ¼ 0� and h ¼ 90�
(where PDFs are symmetrical around g ¼ 0), �fft equals zero.

A notable difference between the PDFs Pn in the initial isotropic state and the other anisotropic states is

that for the anisotropic states at h ¼ 0� the peak in the PDF is found at larger nondimensional force. In

addition, in the anisotropic states the peak in the PDF Pn is found at n ¼ 0 for h ¼ 90�.
These trends can be explained by considering the biaxial deformation mechanism and the associated loss

of contacts in the vertical direction of the minor principle stress h ¼ 90�. It follows from (10) with h0 ¼ 0�
that the number of contacts in the horizontal direction of the major principle stress h ¼ 0� is characterized
by Cð1þ acÞ, while that in the vertical direction h ¼ 90� is characterized by Cð1� acÞ. The evolution with
shear strain eS of these quantities is shown in Fig. 10. Indeed the number of contacts in the horizontal

direction with compressive strain mildly increases, while the number of contacts in the vertical direction

with extensile strain strongly decreases. Similarly, it follows from (11) that the average normal force in the

horizontal direction is given by f0ð1þ anÞ, while that in the vertical direction is given by f0ð1� anÞ. Fig. 10
shows that the average normal force in the horizontal direction increases strongly, while in the vertical

direction it is approximately constant. For h ¼ 90�, many contacts will be broken. In general, the contacts

that tend to be broken are the contacts that have a relatively small normal force. Hence, in the PDF Pn these

contacts will be located before the peak in the PDF for the isotropic state. Therefore the observations that

Pξ Pη

ξ
-2 -1 0 1 20 1 2 3

η

Fig. 7. PDFs for the nondimensional normal and tangential forces for the initial isotropic assembly. Results from discrete element

simulation with l ¼ 0:5.
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Fig. 8. PDFs for the nondimensional normal and tangential forces at peak strength (in black) and at large strain (in grey). Results from

discrete element simulation with friction coefficient l ¼ 0:5.
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the average normal force is constant combined with the decrease of the number of contacts provide a
qualitative explanation of the change of the PDF Pn from that found in the isotropic state, see Fig. 7, to that

shown in Fig. 8 for the anisotropic states for h ¼ 90�.
This process of loss of contacts for h ¼ 90� at small strains is shown in another way in Fig. 11. This gives

the number of contacts (not the probability density) with certain normal forces (not nondimensional force)

for three values of shear strain eS just before the strain corresponding to peak strength. Clearly noticeable is

the reduction in the number of contacts, especially for low normal forces. Also evident in Fig. 11 is the

increase in the average normal force for h ¼ 0�.

ηξ

Pξln Pηln

0 1 2 3 4
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0

-3 -2 -1 0 1 2
-8

-6

-4

-2

0

Fig. 9. Plot of the logarithm of the PDFs for the nondimensional normal and tangential forces, showing exponential decay. Results

from discrete element simulation with friction coefficient l ¼ 0:5, corresponding to the state at peak strength and h ¼ 45�.
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Fig. 10. Evolution with shear strain eS of the number of contacts in horizontal and vertical directions and of the average normal force

in horizontal and vertical directions, relative to the isotropic initial state. Results from discrete element simulation with friction

coefficient l ¼ 0:5.
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Thornton and Antony (1998) performed three-dimensional discrete element simulations with 8000

spheres. Considering the limited size of their assembly, they (naturally) did not consider the PDF for a fixed
contact orientation h, but instead considered the PDF for the normal forces obtained when all orientations

are combined. They found a trend (from initial isotropic state, to state at peak strength and then to large

strain) similar to that shown here in Fig. 8.

5. Maximum entropy method

The (naive) definition of entropy I of the PDF Pf ðf Þ is IðPf Þ ¼
R
f �ln Pf P df , implying a single average of

the contact forces that is independent of contact orientation h. However, as shown in Fig. 2, the average

contact forces will in general depend significantly on contact orientation h. Using the notation (6) for

overall averages, a proper definition of entropy is therefore given in terms of the conditional PDF Pf ðf jhÞ

IðPf Þ ¼
Z 2p

0

SðhÞdh
Z
f

�ln Pf ðf jhÞPf ðf jhÞdf ¼ �hln Pf i ð16Þ

This definition of information entropy for quasi-static deformation of granular materials was first

proposed by Rothenburg (1980). A detailed motivation of (16) is given by Rothenburg and Kruyt (in

preparation) and Kruyt and Rothenburg (2002a). The central assumption made is that forces at contacts
with similar orientations h can be treated as independent realisations of a random variable with the con-

ditional PDF Pf ðf jhÞ. By counting the multitude of all possible responses, it is observed that the most

probable outcome is found when this information entropy attains a maximum, like in the numerous ap-

plications of information theory (Katz, 1967; Kapur and Kesavan, 1992).

Although the contact forces involving a single particle are not independent, since they satisfy the quasi-

static force equilibrium equations for the particles, contacts with similar orientations h are practically in-

dependent (at least for assemblies with sufficient geometrical disorder and small correlation lengths), since

such contacts are spatially separated. An analogy with a system consisting of a mixture of gases in kinetic
theory is that contacts with similar orientations h each constitute an independent subsystem.

Isotropic Isotropic
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Fig. 11. Change in number of contacts with certain normal forces. Results from discrete element simulation with friction coefficient

l ¼ 0:5 at h ¼ 0� and h ¼ 90�. The scales in the plots for h ¼ 0� and h ¼ 90� are identical.
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The maximum entropy method postulates that the PDF Pf ðf jhÞ is determined by maximizing the entropy

(16) under the constraints that apply to the case considered. These constraints form the macroscopic in-

formation available about the system. A universal constraint is the normalisation condition (5).

The maximum entropy method will be used here to determine the conditional PDF Pntðfn; ftjhÞ for the
normal and tangential forces. Part of the derivation by Kruyt and Rothenburg (2002b) is repeated here to

make the current presentation self-contained. The maximization of information entropy will be performed

subject to the constraints formed by the given stress tensor (7) and the normalising condition (5) for

Pntðfn; ftjhÞ. Hence these constraints do not involve the kinematics.

Using the method of Lagrangian multipliers, the PDF that corresponds to maximum information en-

tropy (16) is found to be exponential

Pntðfn; ftjhÞ ¼
1

ZðhÞ e
�Kijljfi ¼ 1

ZðhÞ e
�½KijljnifnþKijljtift� ð17Þ

where Kij and ZðhÞ are the Lagrangian multipliers associated with the stress constraint and the normalising

condition, respectively. To simplify the notation, some abbreviations are introduced

kn ¼ Kijljni kt ¼ Kijljti ð18Þ

where kn and kt will in general depend on contact orientation. Then the PDF Pntðfn; ftÞ can be written as

Pntðfn; ftjhÞ ¼
1

Z
e�ðknfnþktftÞ ð19Þ

The marginal PDF Pn for the normal force and the marginal PDF Pt for the tangential force are obtained
by integration from Pnt

PnðfnÞ ¼
Z lfn

�lfn

Pntðfn; ftÞdft ¼
1

Z
e�ðkn�lktÞfn � e�ðknþlktÞfn

kt

� �

PtðftÞ ¼
Z 1

jftj=l
Pntðfn; ftÞdfn ¼

1

Z
e�ktft e�knjftj=l

kn

ð20Þ

After some algebra it follows from (20) that �11 ¼ ð1=ZÞ½2l=ðk2
n � l2k2

t Þ�, and hence the Lagrangian

multiplier Z associated with the normalising condition (5) becomes

Z ¼ 2l

k2
n � l2k2

t

ð21Þ

while the average normal and tangential force are given by

�ffn ¼
2kn

k2
n � l2k2

t

�fft ¼
�2l2kt

k2
n � l2k2

t

ð22Þ

Note that the expression for the average tangential force given by Kruyt and Rothenburg (2002b) contains

an error. The expressions (22) for the averages �ffn and �fft in terms of the coefficients kn and kt can be inverted

to give expressions for kn and kt in terms of the averages �ffn and �fft

kn ¼
2l2�ffn

l2�ff 2
n � �ff 2

t

kt ¼
�2�fft

l2�ff 2
n � �ff 2

t

ð23Þ

The PDFs for the nondimensional normal force n and for the nondimensional tangential force g become

PnðnÞ ¼
e
�2n
1þq � e

�2n
1�q

q
PgðgÞ ¼ e

�2
jgj�qg

1�q2 ð24Þ

where n and g are defined in (13) and q is given in (14).
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These theoretical predictions are shown in Fig. 12. The PDF Pn for the nondimensional force n is only

shown for q ¼ 0, since the results for other, realistic values of q are practically indistinguisable. In fact,

from a Taylor expansion it follows that for small q and finite n and g, we have

PnðnÞ ¼ 4ne�2n þOðq2Þ PgðgÞ ¼ e�2jgj½1þ 2qg� þOðq2Þ ð25Þ

Hence the theoretical PDF Pn for the normal forces does not depend strongly on friction coefficient. This

was also observed experimentally by Blair et al. (2001) and in the discrete element simulations of isotropic

assemblies by Kruyt and Rothenburg (2002b). This theoretical PDF Pn for the nondimensional force n was
also obtained by Coppersmith et al. (1996) from a lattice-type model.

The theoretical decay rate rn for the nondimensional normal force is rn ¼ 2=ð1þ jqjÞ, while the decay

rate rg for the nondimensional tangential force is different for positive and negative tangential forces, i.e.

rg ¼ 2=ð1þ qÞ for g � 1 and rg ¼ 2=ð1� qÞ for g � �1. The discrete element simulations also show that

the decay rates rg are different for positive and negative g, see Fig. 9.

The PDF Pn is qualitatively similar to those observed in the discrete element simulations for the isotropic

state and for the anisotropic states for h ¼ 0�. A difference with the results from the simulations is that the

probability density at n ¼ 0 is underestimated theoretically. The PDF Pn for h ¼ 90� from the simulations is
qualitatively different, since in the simulations the peak of the PDF is found at n ¼ 0.

The theoretical PDF Pg is qualitatively similar to those observed in the discrete element simulations. It is

symmetrical with respect to g ¼ 0 when q ¼ 0. When q 6¼ 0, the PDF is no longer symmetrical.

5.1. Lagrangian multiplier

Here the Lagrangian multiplier Kij associated with the stress constraint (7) will be determined for the

case where the particles are disks, the assembly is anisotropic with contact density function SðhÞ given by
(10) and the stress tensor rij in biaxial deformation is

0 1 2 3

Pξ

ξ

ρ 0.4–=

ρ 0.0=

ρ 0.2–=

-2 -1 0 1 2

η

Pη

ρ 0.0=

Fig. 12. Theoretical PDF Pn for the nondimensional normal force n, and theoretical PDF Pg for the nondimensional tangential force g.
The latter is shown for various values of the parameter q as defined in (14).
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rij ¼
1

2
ðp þ qÞ 0

0
1

2
ðp � qÞ

2
64

3
75 ð26Þ

The corresponding form for the Lagrangian multiplier Kij is

Kij ¼
Dð1þ EÞ 0

0 Dð1� EÞ

� �
ð27Þ

Using (18), (22), (27), fi ¼ fnni þ ftti and li ¼ �llnni for disks, it follows after some lengthy algebra from

the stress constraint (26), after linearization in E, that

D ffi mA

p
1þ l2 � 1

2
a2c

1þ l2 � ac
q

p

E ffi
ac � 2

q

p

1þ l2 � ac
q

p

ð28Þ

After linearization in ac and q=p, it follows from (18), (22), (27) and (28) that the Fourier representations

of the group averages of the normal and tangential force are

�ffnðhÞ ffi
2p

mA
�lln

þ
2p 2

q

p � ac
� 


mA
�llnð1þ l2Þ

cos 2ðh � h0Þ �fftðhÞ ffi
�2l2p 2

q

p � ac
� 


mA
�llnð1þ l2Þ

sin 2ðh � h0Þ ð29Þ

or for the Fourier components as given in (11)

f0 ffi
2p

mA
�lln

an ffi
2

q

p � ac
1þ l2

at ffi l2
2

q

p � ac
1þ l2

ð30Þ

Note that these results are consistent with the strength–anisotropy–force relation (12). It follows from (30)

that according to the maximum entropy method we have

at
an

ffi l2 ð31Þ

Note that at signifies the contribution of the tangential forces to the shear strength q=p, see (11) and (12).

Results from discrete element simulations involving the friction coefficients l ¼ 0:1, l ¼ 0:3 and l ¼ 0:5
are used to study the evolution with shear strain eS of the ratio at=an, see Fig. 13. This ratio gradually

decreases until an asymptotic value is attained at larger strains. The values at large strain are compared

with the theoretical relation (31) in Fig. 13. It shows that the theoretical value is correct for l ¼ 0:5, but that
it overestimates the ratio at=an for lower friction coefficients. An accurate fit to the data is obtained by
at=an ¼ l=2.

Alternatively, one can obtain a relation for at by assuming that at some orientation h, the average

tangential force is fully mobilised, i.e. maxhfj�fftðhÞj=�ffnðhÞg ¼ l. After some algebra it follows that the angle

h�, at which the maximum is attained, satisfies tan 2h� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2nÞ

p
=an. Finally, this results in

at ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2n

q
ð32Þ

The theoretical values of at at large strain are compared to those observed from the discrete element

simulations in Table 1. This shows that the values of at according to (32), i.e. based on the assumption of
fully mobilised average tangential force, greatly overestimate the values of at obtained from the results of

discrete element simulations.
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5.2. Weak contacts

Radja€ıı et al. (1998) proposed a division of contacts into ‘‘strong’’ contacts with high normal forces and

‘‘weak’’ contacts with low normal forces. From results of computer simulations they observed that the

strong contacts and the weak contacts have quite distinct contact density functions. In particular, they

noted that the direction of anisotropy of the strong contacts is in the direction of the major principal stress,

while that of the weak contacts is in the direction of the minor principal stress. Since we have obtained a

theoretical expression for the PDF for the normal forces, it is possible to investigate this division theo-
retically.

The weak contacts are defined as those contacts at which the normal force is below a threshold, i.e.

f c
n 6 vð2pÞ=ðmA

�llnÞ, where v is a nondimensional threshold parameter. Note that the factor ð2pÞ=ðmA
�llnÞ is

equal to the theoretical Fourier coefficient f0 in (30). Similarly to the contact distribution function SðhÞ of
all contacts in the assembly, a contact distribution function sðh; vÞ for the weak contacts can be defined by

sðh; vÞDh ¼ Probability h

�
< hc < h þ Dh; f c

n 6 v
2p

mA
�lln

�
¼ SðhÞDh

Z v 2p
mA

�lln

0

PnðfnjhÞdfn ð33Þ

where the second equality follows from the definition of conditional probability.
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Fig. 13. Evolution of at=an with shear strain eS for various friction coefficients l from discrete element simulations and comparison of

values of at=an at large strain between results from simulations and the theoretical relation (31).

Table 1

Comparison of theoretical results for at with those from discrete element simulations at large strain for various friction coefficients l

l at from simulation at from relation (31) at from relation (32)

0.1 0.020 0.003 0.095

0.3 0.061 0.034 0.278

0.5 0.090 0.092 0.465
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In analogy to (10), the contact distribution function sðh; vÞ is represented by a Fourier series

sðh; vÞ ¼ 1

2p
½1þ acðvÞ cos 2ðh � h0Þ� ð34Þ

Using a Taylor series expansion in ac and q=p, it follows after some lengthy algebra from (24), (29) and

(33) that the anisotropy acðvÞ is given by

ac � acðvÞ
ac � ac0

ffi 2v2

e2v � ð1þ 2vÞ ac0 ffi ac � 2
2

q
p � ac
1þ l2

ð35Þ

Note that ac0 ¼ acðv ! 0Þ and that acðv ! 1Þ ¼ ac.
The theoretical prediction is compared with results of a discrete element simulation in Fig. 14. The

results of the present simulation are in qualitative agreement with those obtained by Radja€ıı et al. (1998)
after noting that their hF i ¼ f0=ð2pÞ (see (11)). The theory predicts that the anisotropy becomes negative

for small values of v, which is also observed from the simulations. Note that a negative anisotropy aðvÞ
corresponds to the anisotropy of sðh; vÞ being in the direction of the minor principal stress. Hence the

salient qualitative characteristic of the weak contacts is predicted theoretically. Fig. 14 shows that the
theory overestimates the anisotropy at small forces and it underestimates the rate at which the overall

anisotropy ac is approached. This is ultimately related to deviations between the theoretical PDF for the

normal forces and the actual PDF observed in the discrete element simulations.

6. Discussion

The PDFs for the contact forces have been studied numerically and theoretically. It is observed that the

average forces depend significantly on contact orientation. Therefore the PDFs are also dependent on

contact orientation, and it is appropriate to consider the conditional PDFs for the contact forces given the
contact orientation. These conditional PDFs are studied numerically, using results from discrete element
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Fig. 14. Anisotropy of ‘‘weak’’ contacts. Results from discrete element simulations with friction coefficient l ¼ 0:5 at peak strength and

at large strain and comparison of theory with results from simulations.

N.P. Kruyt / International Journal of Solids and Structures 40 (2003) 3537–3556 3553



simulations of biaxial deformation of a large two-dimensional assembly of 200,000 disks, and theoretically

using a maximum entropy method.

As has been observed experimentally, numerically and theoretically for isotropic assemblies, the PDFs

also exhibit exponential tails for anisotropic assemblies. For contacts with orientations in the direction of
the minor principal stress, the shape of the PDF for the normal forces changes qualitatively from that in the

isotropic state. As discussed in Section 4, this difference is caused by the biaxial deformation mechanism,

i.e. on the kinematics of deformation. This deformation mechanism results in a reduction of coordination

number, i.e. in the disruption of contacts. The contacts that are broken are predominantly oriented in the

direction of the minor principle stress. For contact orientations in the principal stress directions the PDFs

for the tangential forces retain the same shape in comparison with that in the isotropic state, but they

become wider due to the biaxial deformation mechanism which leads to a wider range of tangential forces.

For other contact orientations, the PDF for the tangential forces is not symmetrical with respect to zero
tangential force. The PDFs for the nondimensional normal and tangential forces are approximately in-

dependent of strain beyond the elastic range, except for the PDFs for forces with contact orientations in the

direction of the minor principle stress.

The theoretical PDF for the normal forces is qualitatively similar to those observed in the simulations in

the isotropic state and in the anisotropic states for contact orientations in the direction of the major

principal stress. The major difference between simulations and theory is that the probability of small normal

forces is underestimated theoretically. The theoretical PDF for the tangential forces is qualitatively similar

to all PDFs observed in the simulations. This includes the asymmetry of the PDF around zero tangential
force when the group average tangential force does not equal zero and the different decay rates observed for

positive and negative tangential forces.

The maximum entropy theory also results in relation (31) between the components at and an in the

stress–force–fabric relation (12). This relation gives much better agreement with the results of the simu-

lations than relation (32) that is based on the assumption of fully mobilised group average tangential forces.

A further salient feature of the theory is that it qualitatively predicts the anisotropy of the weak contacts

being in the direction of the minor principle stress.

From experimental studies employing photoelastic materials (for example De Josselin de Jong and
Verruijt, 1969; Drescher and de Josselin de Jong, 1972; Oda and Konishi, 1974), it is well-known that force

chains arise in granular materials, which indicate spatial correlations between contact forces. It is not

possible to predict the occurrence of such force chains with the maximum entropy method, since it is as-

sumed in this theory that the contact forces are independent realisations of a random variable, i.e. spatial

correlations are absent.

The explanation given in Section 4 for the evolution of the shape of the PDFs is based on considerations

of the biaxial deformation mechanism, i.e. on the kinematics. The kinematics are coupled to the statics by

the contact constitutive relation (8) that involves the elastic parameters kn and kt.
Thornton and Antony (1998) showed on the basis of results of three-dimensional discrete element

simulations with fairly small isotropic assemblies that elastic parameters in their contact constitutive re-

lation influence the PDF for the nondimensional normal forces at identical confining hydrostatic stress.

Alternatively, they showed that for ‘‘soft’’ particles this PDF depends on the level of confining stress, while

for ‘‘hard’’ particles this dependence of this PDF on the stress level is small.

On the basis of dimensional analysis one finds that for two-dimensional isotropic assemblies under

hydrostatic confining stress r and with the contact constitutive relation (8) considered, the PDF for the

nondimensional normal forces is given by a functional relation between nondimensional quantities of
the form Pn ¼ F ðn; q; l; r=fknRavgg; kt=kn, PSD). Here q is given by (14) and PSD denotes the shape of the

particle-size distribution. Note that for two-dimensional assemblies the quantity r=fknRavgg is nondimen-

sional and that the theoretical result (24) is of the form Pn ¼ F ðn; qÞ. Hence dimensional analysis gives a

functional form that contains more nondimensional quantities (such as elastic parameters, confining stress
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and particle-size distribution) than the theoretical result (24), but the theoretical analysis yields a specific

functional form. The results of Thornton and Antony (1998) demonstrate that the extra nondimensional

quantity r=fknRavgg is important for soft particles (high value of r=fknRavggÞ, while for hard particles (low

value of r=fknRavggÞ this quantity has a small influence.
It is recommended to investigate further the effect on the PDFs for the forces of (i) the elastic component

of the contact constitutive relation, including the use of more realistic Hertzian-type models, and (ii) the

particle-size distribution.

In the present theoretical formulation the kinematics have not been considered. It is expected that a

more detailed theoretical description may be obtained by introducing additional constraints involving the

kinematics into the maximum entropy formulation, for example by prescribing a strain increment. This

obviously leads to greatly increased analytical complexity. If this complexity were to be resolved success-

fully, the resulting theory would give the evolution of the PDF for the contact forces in terms involving a
strain increment. Since the stress increment can be determined from the PDF for the contact forces, the

result will imply a micromechanical constitutive relation.
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