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Abstract

The probability density functions (PDFs) of contact forces in anisotropic, cohesionless and frictional granular
materials are studied numerically and theoretically. Using discrete element simulations of biaxial deformation of a large
two-dimensional assembly consisting of 200,000 disks, it is observed that the PDFs for the normal and tangential
components of the contact forces depend significantly on contact orientation. The PDFs exhibit exponential decay and
the PDF for the tangential component of the contact forces is not always symmetrical with respect to zero tangential
force. The shape of the PDF for the normal component of the contact forces changes with shear strain. A qualitative
explanation for this change is given that is related to the biaxial deformation mechanism in which the disrupted contacts
are predominantly oriented in the direction of the minor principle stress.

A maximum entropy method is employed to study these PDFs theoretically, using a prescribed stress tensor as
constraint. It is found that the theoretical results correspond qualitatively to many of the results obtained from the
discrete element simulations. Discrepancies between theory and simulations are attributed to the fact that the kine-
matics have not been taken into account in the theory.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Granular materials; Force probability density function; Maximum entropy method; Anisotropy

1. Introduction

Recently, there has been considerable interest in the probabilistic characteristics of contact forces in
granular materials in quasi-static equilibrium. These characteristics are important in obtaining a more
profound understanding of the behaviour of granular materials. Furthermore, this knowledge may be of
more practical interest, such as in probabilistic continuum-mechanical models of failure and fracture. In a
probabilistic framework the contact forces are described by the probability density function (PDF for
short). Such PDFs have been studied experimentally, theoretically and numerically.

The experimental studies by Mueth et al. (1998), Lovoll et al. (1999), Makse et al. (2000) and Blair et al.
(2001) show that in isotropic assemblies the PDF for the normal component of the contact forces generally
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exhibits exponential decay. However, for high pressures Makse et al. (2000) observed a Gaussian-type
PDF.

Theoretical studies of PDFs for contact forces generally employ two types of methods, lattice-type
methods and maximum entropy methods. Lattice-type methods were developed by Coppersmith et al.
(1996), Socolar (1998) and Nguyen and Coppersmith (2000). They assume a probabilistic propagation of
contact forces that does not seem to reflect the statically indeterminate, structure-like nature of granular
materials where elastic effects are significant. An important result of the lattice model by Coppersmith et al.
(1996) is that the exponential decay of the PDF for the normal component of the contact forces can be
predicted theoretically. A maximum entropy method for quasi-static deformation of granular materials was
first proposed by Rothenburg (1980). It was subsequently used by Bagi (1997) and Kruyt and Rothenburg
(2002b) to study the PDF for the contact forces. Bagi (1997) showed that the PDF exhibits exponential
decay, while Kruyt and Rothenburg (2002b) obtained the PDFs for the normal and tangential components
of the contact forces for isotropic assemblies. These PDFs demonstrate the importance of dry Coulomb
friction for cohesionless granular materials.

Numerous numerical studies of the PDFs for the contact forces have been performed, for example by
Radjai et al. (1996), Thornton (1997), Thornton and Antony (1998), Makse et al. (2000), Antony (2000)
and Kruyt and Rothenburg (2002b). These studies generally use the discrete element method, as proposed
by Cundall and Strack (1979). Such discrete element simulations are very suitable in micromechanical
studies, since they can provide results which cannot be obtained easily by direct measurements, such as
forces at internal contacts and tangential forces in particular. The PDFs obtained from these simulations
show qualitative agreement with those obtained experimentally. Quantitative differences between the results
of the various simulations may be due to the different parameters used, such as packing density, stress level
and the contact constitutive relation.

The previous studies mostly focused on the PDF for the normal component of the contact forces in
isotropic assemblies. The emphasis of this study will be on PDFs for the normal and the tangential com-
ponent of the contact forces in anisotropic assemblies. To this end two-dimensional discrete element
simulations are performed of biaxial deformation of a large assembly of 200,000 disks. The biaxial de-
formation results in induced anisotropy of the assembly (Rothenburg and Bathurst, 1989). The PDFs for
the contact forces are also studied theoretically, using a maximum entropy method.

The outline of this study is as follows. In Section 2 the various micromechanical quantities are defined
and the micromechanical expression for the average stress tensor is given. In Section 3 the discrete element
simulations are described, including the contact constitutive relation that was used. In Section 4 the PDFs
are given for the normal and tangential components of the contact forces, as determined from the discrete
element simulations. Section 5 deals with the theoretical study of the PDF for the contact forces, using a
maximum entropy method. Finally, findings from this study are discussed.

The usual sign convention from soil mechanics is employed here, which means that compressive stresses
and strains are considered positive. Furthermore, the summation convention is used, by which a summation
is implied over repeated subscripts.

2. Micromechanics

Micromechanics of quasi-static deformation of granular materials deals with the study between micro-
scopic characteristics and macroscopic characteristics. For assemblies of semi-rigid particles the micro-
scopic level is that of contacts, where the quantities of interest are force and relative displacement between
particles. The macroscopic quantities of interest are the average stress and strain tensors. An important
objective of micromechanics is to formulate macroscopic constitutive relations in terms of microscopic
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quantities, such as the contact constitutive relation that relates the force and the relative displacement at the
contact.

The force at the contact that is exerted by particle ¢ on particle p is denoted by f7?. In the two-
dimensional case considered here the relative displacement A?? between particles in contact is defined by

A7 = U + eo"r] = [UF + eaf'r}] (1)

where U? is the displacement of the centre of particle p, @” is its rotation, e; is the two-dimensional per-
mutation tensor and 7 is the vector from the centre of particle p to the point of contact between particles p
and ¢, see also Fig. 1. Also shown in Fig. 1 are the unit normal vector n??, the unit tangential vector #7 at
the contact point and the branch vector /7. The branch vector is the vector connecting the centres of the
particles that are in contact. The orientation of a contact is denoted by 0™, such that n? = {cos 6",
sin 07},

The primary statistical quantities describing the contact geometry of the assembly of particles are co-
ordination number I' and the contact distribution function S(0). Coordination number is the average
number of contacts per particle. For isotropic assemblies it is a measure of the packing density of the
assembly, see Kruyt and Rothenburg (1996). The contact distribution function (Horne, 1965) is defined
such that S(0) A0 is the fraction of contacts with orientation 6 in the interval (0, 0 + Af). An example of an
anisotropic contact distribution function, as determined from results of a discrete element simulation, is
shown in Fig. 2.

pq
t;

Particle p

Fig. 1. Geometrical quantities associated with two particles in contact.

S6) f,(0) f(0)

Fig. 2. Polar plots of the contact distribution function and the group averages of normal and tangential contact forces.
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The most important macroscopic quantities are the stress tensor o;; and the strain tensor ¢;. The micro-
mechanical expression for the average stress tensor in terms of contact forces f;° and branch vectors /¢ is
(see for example, Drescher and de Josselin de Jong, 1972; Strack and Cundall, 1978; Rothenburg and
Selvadurai, 1981; Mehrabadi et al., 1982)

1
oy =7 S (2)
ceC

where the summation is over the contacts ¢ in the set C in the region of interest with area 4.

From continuum-mechanical considerations it is expected that points that are separated by a vector
l; ={lcos0,Isin Q}T show a relative displacement ¢;;/;. This means that the relative displacement depends
on orientation 6. Therefore it is logical to group contacts with similar orientations and to analyse group
averages for relative displacements and forces at contacts (Rothenburg and Bathurst, 1989; Bathurst and
Rothenburg, 1990). The group averages for the normal and tangential forces are denoted by £, (6) and f£;(0),
respectively. Polar plots of such group averages, as determined from results of a discrete element simula-
tion, are shown in Fig. 2.

For analytical manipulations it is advantageous to transform a sum over contacts of a generic contact
quantity ¢° to an integral form. Using the definitions of the contact distribution function S(0) and the
group average ¢(0), this transformation is established by

T =m [ s)d)a ©

ceC

where m, is the contact density, i.e. the number of contacts per area.

Fig. 2 shows that the group averages of the contact forces, and hence the statistical characteristics in
general, depend significantly on contact orientation 6. For a complete description of the probabilistic
characteristics of the contact forces it is therefore necessary to consider the conditional PDF P;(f|0) of the
contact force given the contact orientation 6.

The group average ¢(0) of a generic contact quantity ¢° is determined from the PDF P;(f|0) by

mw=[¢mm@mmw (4)

Since P/(f|0) is a PDF, it must satisty the normalising condition
10)=1 (5)
The overall average (¢) is finally defined by integrating the group average over all contact orientations 0

<@=A3@wmw (6)

Using this notation, the micromechanical expression (2) for the stress tensor becomes
g = ma(fil;) (7)

3. Discrete element simulations

In this section the contact constitutive relation is described that is used in the discrete element simula-
tions. The basic characteristics of the initial assembly are also given, and the biaxial deformation that is
imposed on this assembly is described. The evolution with shear strain of the macroscopic shear strength



N.P. Kruyt | International Journal of Solids and Structures 40 (2003 ) 3537-3556 3541

and volumetric strain are shown, as well as that of coordination number and contact anisotropy that to-
gether describe the primary statistics of the contact geometry.

3.1. Contact constitutive relation and initial assembly

The contact constitutive relation used in the discrete element simulations is basically that employed by
Cundall and Strack (1979). It involves elastic and Coulomb frictional effects. The elastic component of the
constitutive relation is described by two linear springs in the normal and tangential direction at the contact
with spring constants k, and k, respectively. Hence, the normal component f¢ and the tangential com-
ponent f¢ of the contact force are related to the normal component 4 and the tangential component 4; of
the relative displacement at the contact by
fo =hkady S = kAL (8)

n

with the restriction that only compressive normal forces are allowed. If the normal force were to become
negative, the contact is considered to be broken for cohesionless materials. Furthermore, the tangential
force is limited by Coulomb friction, i.e. |f¢|< uf¢ where p is the friction coefficient. The range of ad-
missible contact forces is shown in Fig. 3.

The initial, isotropic assembly consists of 200,000 disks from a fairly wide, lognormal particle-size
distribution with average particle radius R,y,. The initial packing density, i.e. the total area occupied by
the particles divided by the area of the assembly, is v = 0.850. The initial coordination number is I = 4.07.
The hydrostatic confining stress ¢ is such that /(k,Raye) = 5 x 1072 and the stiffness ratio k/k, = 0.5. The
friction coefficient u that is mainly considered is u = 0.5, while ¢ = 0.1 and 0.3 are used in some additional
simulations.

The procedure employed to create the fairly dense, isotropic initial assembly consists of four steps. The
first step involves the determination of random initial positions for the disks such that there are no contacts.
In the second step this extremely loose assembly is slowly compacted with zero friction coefficient u until the
prescribed hydrostatic confining stress ¢ is obtained. In the third step the assembly is isotropically expanded
by 1%, leading to a reduction in confining stress o. In the fourth step, the assembly is once again com-
pressed isotropically with the friction coefficient u set to the lowest value considered (¢ = 0.1) until the
prescribed hydrostatic confining stress ¢ is obtained. These last two steps in the creation of the initial
assembly are performed in order to allow tangential forces to develop.

The case considered here is that without body forces acting on the particles, since the presence of body
forces would lead to a heterogeneous average stress field.

fi

A
. Compressive normal forces
Tensile normal forces
fi = uf, ‘ Region of admissible forces
.
)
ft - _ufn

Fig. 3. Region of admissible contact forces.
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Fig. 4. Schematic of biaxial deformation.

3.2. Biaxial deformation, macroscopic behaviour and group averages

The isotropic initial assembly is subjected to biaxial deformation, as sketched in Fig. 4. A compressive
(principal) strain ¢, is imposed in the horizontal direction, while the (principal) stress o, in the vertical
direction is kept constant. For this type of deformation ¢ in the horizontal direction will be the major
principle stress, while o, in the vertical direction will be the minor principle stress. Pressure p, shear stress g,
volumetric strain ¢y and shear strain &g are then defined by

p=501+0) g=3(0—0)
)
8V:£1+82 &g =& — &

The maximum strain ¢; that was applied in the simulations is ¢; = 0.10. The simulations were performed
using periodic boundaries (Cundall, 1986) in order to minimize boundary effects.

The macroscopic shear strength g/p and the volumetric strain gy that are observed from the simulation
are shown in Fig. 5. The shear strength increases from zero in the initial isotropic state to a peak strength,
and then gradually decreases. For small strains the volumetric strain corresponds to (elastic) compression
of the material, while for larger strains the material dilates. This type of behaviour is characteristic for
granular materials in a fairly dense initial packing.

From the simulations the contact distribution function S(0) and the group averages of the normal forces
/.(0) and of the tangential forces f;(0) could be determined, see Fig. 2 for an example.

The results can be represented by Fourier series (Rothenburg and Bathurst, 1989; Bathurst and Roth-
enburg, 1990)

S(0) = % [1 + ac.cos2(0 — 0p)] (10)
fa(0) = fo[l +ancos2(0—0p)]  fi(0) = —foa;sin2(0 — 0p) (11)

Here 60, is the direction of the major principle stress (6, = 0° for the configuration shown in Fig. 4), which is
assumed to coincide with the direction of contact anisotropy. Parameter a. describes the anisotropy of the
contact distribution function S(0). Parameter f, is a measure of the average normal force, a, is a measure of
the anisotropy in the distribution of the normal forces and a, is a measure of the magnitude of the tan-
gential forces, relative to the normal forces.
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Fig. 5. Evolution with shear strain & of shear strength ¢/p and volumetric strain gy for discrete element simulation with friction
coefficient p = 0.5.

As was shown by Rothenburg and Bathurst (1989), see also Bathurst and Rothenburg (1990), the
parameters a., a, and a, are related to the shear strength ¢/p by the stress—force—fabric relation

%[ac—i—an—i—at] (12)

Since the strains correspond to compression in the horizontal direction and to extension in the vertical
direction, it is expected that the contacts that are broken during the biaxial deformation are predominantly
oriented in the vertical direction. This is manifested by changes in coordination number I' and contact
anisotropy a., see Fig. 6. Coordination number I" gradually decreases until it reaches an approximately
constant value. Contact anisotropy a. increases from zero in the initial isotropic state until it reaches a

45 0.6

35

1 L L
30 005 01 03B 02z 05 % o006 o1 o0& 02 oz
€s €s

Fig. 6. Evolution with shear strain &5 of coordination number I' and parameters a., a, and «, for discrete element simulation with
friction coefficient = 0.5.
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peak, and then gradually decreases. Note that the strains corresponding to peak strength ¢/p and peak
anisotropy a. do not coincide. The other parameters a, and a, show a behaviour that is similar to that of a..

4. Probability density functions of contact forces

Since the assembly consists of 200,000 particles, it is possible to determine the conditional PDFs for the
contact forces (given the contact orientation ) with reasonable accuracy. The marginal PDFs for the
normal and tangential forces are denoted by P,(f4|60) and P(f{|0), respectively. To determine these for a
fixed contact orientation 6, all contacts whose orientation is in an interval with a width of 10° around this
value were used as data to estimate the PDFs. Histograms of these were determined by dividing the ranges
of contact forces into 50 bins.

The PDFs for the contact forces are conveniently shown in terms of the nondimensional normal force &
and the nondimensional tangential force 5. These are defined by

LI

I (13)
_h
n_ﬂfn oo << oo

The parameter p(6), relating group averages of normal and tangential forces, is defined by

7o)
PO = 70 4

and hence —1 < p(0) < 1.

Results for the PDFs P:(£|0) for the nondimensional force ¢ and P,(y|0) for the nondimensional tan-
gential force 5 are shown for the initial isotropic assembly (es = 0.0), for the state corresponding to peak
strength (es = 0.047) and for the state corresponding to large strain (es = 0.227). For the initial isotropic
state P:(¢]0) and P,(n]0) are independent of 0. For the states corresponding to peak strength and large
strain, the PDFs have been determined for contact orientations 6 = 0°, 0 = 45° and 0 = 90°.

The PDFs in the initial isotropic state are shown in Fig. 7. The PDF P; for the normal forces does not
equal zero for ¢ = 0. The PDF P, for the tangential forces is symmetrical around » = 0 and it is rather
narrow. These PDFs closely resemble those given by Kruyt and Rothenburg (2002b), although quantitative
differences are present in the PDF P, for the tangential force. These are caused by the differences in packing
density and confining stress.

The PDFs for the states that correspond to peak strength and to large strain are shown in Fig. 8. The
PDFs at peak strength are shown in black, while the PDFs at large strain are shown in grey. Except for
0 = 0°, the PDFs at peak strength and at large strain are very similar. The PDFs for 6 = 0° are qualitatively
the same as those in the initial isotropic state. The PDFs P: for the normal forces at 0 = 45° and 0 = 90° are
qualitatively different from that in the initial state. The probability density at & = 0 has increased. For
0 = 0° and 0 = 45° the peak of the PDF P: is found at ¢ between 0.5 and 1.0, while for 0 = 90° the peak of
the PDF is found at £ = 0. In comparison with the initial isotropic state, the PDFs P, for the tangential
forces are much wider. For 0 = 45° the PDF P, is no longer symmetrical around # = 0.

Parameter p, as defined in (14), equals zero for # = 0° and 6 = 90°. For 6 = 45°, we have p = —0.35 at
peak strength and p = —0.18 at large strain.

For large forces (£ > 1 and |5| > 1) the PDFs exhibit exponential decay, i.e.

InP: = —r:é+ C; InP, = —r|n| + C, (15)
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Fig. 7. PDFs for the nondimensional normal and tangential forces for the initial isotropic assembly. Results from discrete element
simulation with g = 0.5.

where r; and r, are the decay rates. For the isotropic state this exponential decay was shown experimentally
by Mueth et al. (1998) and Levoll et al. (1999), while Radjai et al. (1996) and Kruyt and Rothenburg
(2002b) observed this from simulations. Fig. 9 for the PDFs at peak strength and 6 = 45° shows that
exponential decay of the contact forces also occurs in anisotropic assemblies. Here the decay rates are
re 2.8, r, 2 3.2 for negative # and r, = 4.6 for positive #.

The most notable differences between the PDF P, for the tangential forces in the initial isotropic state
and the other anisotropic states are that in the anisotropic states it is much wider and that it no longer is
symmetrical around n = 0 for 6 = 45°. The PDFs are wider in the anisotropic states due to the biaxial
deformation mechanism which leads to greatly increased relative displacements between particles, and
hence to a far wider range of tangential forces. For 0 = 45° the PDF is asymmetrical since the group
average tangential force f; is not zero for 0 = 45°, see Fig. 2. Fig. 2 also shows that for 0 = 0° and 0 = 90°
(where PDFs are symmetrical around # = 0), f; equals zero.

A notable difference between the PDFs P: in the initial isotropic state and the other anisotropic states is
that for the anisotropic states at 0 = 0° the peak in the PDF is found at larger nondimensional force. In
addition, in the anisotropic states the peak in the PDF P: is found at ¢ = 0 for 0 = 90°.

These trends can be explained by considering the biaxial deformation mechanism and the associated loss
of contacts in the vertical direction of the minor principle stress 0 = 90°. It follows from (10) with 0, = 0°
that the number of contacts in the horizontal direction of the major principle stress 6 = 0° is characterized
by I'(1 + a.), while that in the vertical direction 6 = 90° is characterized by I'(1 — a.). The evolution with
shear strain &5 of these quantities is shown in Fig. 10. Indeed the number of contacts in the horizontal
direction with compressive strain mildly increases, while the number of contacts in the vertical direction
with extensile strain strongly decreases. Similarly, it follows from (11) that the average normal force in the
horizontal direction is given by fo(1 + a,), while that in the vertical direction is given by fo(1 — a,). Fig. 10
shows that the average normal force in the horizontal direction increases strongly, while in the vertical
direction it is approximately constant. For 6 = 90°, many contacts will be broken. In general, the contacts
that tend to be broken are the contacts that have a relatively small normal force. Hence, in the PDF P; these
contacts will be located before the peak in the PDF for the isotropic state. Therefore the observations that



3546 N.P. Kruyt | International Journal of Solids and Structures 40 (2003 ) 3537-3556

4——— Peak strength 6 =0

<4—Peak strength

Large strain 11
Large strain

0=45
4———Peak strength
Peak strength
Pe Py
<«— Large strain
Large strain
0 I1 é 3 -2 1 0 1 2
g n
0 =90
Pg Pn
0 '1 é 3 -2 -'1 (') '1 2

Fig. 8. PDFs for the nondimensional normal and tangential forces at peak strength (in black) and at large strain (in grey). Results from
discrete element simulation with friction coefficient u = 0.5.
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Fig. 9. Plot of the logarithm of the PDFs for the nondimensional normal and tangential forces, showing exponential decay. Results
from discrete element simulation with friction coefficient u = 0.5, corresponding to the state at peak strength and 0 = 45°.
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Fig. 10. Evolution with shear strain ¢s of the number of contacts in horizontal and vertical directions and of the average normal force
in horizontal and vertical directions, relative to the isotropic initial state. Results from discrete element simulation with friction
coefficient u = 0.5.

the average normal force is constant combined with the decrease of the number of contacts provide a
qualitative explanation of the change of the PDF P: from that found in the isotropic state, see Fig. 7, to that
shown in Fig. 8 for the anisotropic states for 6 = 90°.

This process of loss of contacts for = 90° at small strains is shown in another way in Fig. 11. This gives
the number of contacts (not the probability density) with certain normal forces (not nondimensional force)
for three values of shear strain ¢g just before the strain corresponding to peak strength. Clearly noticeable is
the reduction in the number of contacts, especially for low normal forces. Also evident in Fig. 11 is the
increase in the average normal force for 6 = 0°.
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Fig. 11. Change in number of contacts with certain normal forces. Results from discrete element simulation with friction coefficient
u=0.5at 0 =0°and 6 = 90°. The scales in the plots for § = 0° and 6 = 90° are identical.

Thornton and Antony (1998) performed three-dimensional discrete element simulations with 8000
spheres. Considering the limited size of their assembly, they (naturally) did not consider the PDF for a fixed
contact orientation 0, but instead considered the PDF for the normal forces obtained when all orientations
are combined. They found a trend (from initial isotropic state, to state at peak strength and then to large
strain) similar to that shown here in Fig. 8.

5. Maximum entropy method

The (naive) definition of entropy 7 of the PDF Py (f)is I(P;) = [ , —In P Pdf, implying a single average of
the contact forces that is independent of contact orientation 0. However, as shown in Fig. 2, the average
contact forces will in general depend significantly on contact orientation 6. Using the notation (6) for
overall averages, a proper definition of entropy is therefore given in terms of the conditional PDF P,(f0)

1(7) = / "s(0)do /f P (f10)P,(f10)df = —(InP) (16)

This definition of information entropy for quasi-static deformation of granular materials was first
proposed by Rothenburg (1980). A detailed motivation of (16) is given by Rothenburg and Kruyt (in
preparation) and Kruyt and Rothenburg (2002a). The central assumption made is that forces at contacts
with similar orientations 0 can be treated as independent realisations of a random variable with the con-
ditional PDF P,(f|0). By counting the multitude of all possible responses, it is observed that the most
probable outcome is found when this information entropy attains a maximum, like in the numerous ap-
plications of information theory (Katz, 1967; Kapur and Kesavan, 1992).

Although the contact forces involving a single particle are not independent, since they satisfy the quasi-
static force equilibrium equations for the particles, contacts with similar orientations 0 are practically in-
dependent (at least for assemblies with sufficient geometrical disorder and small correlation lengths), since
such contacts are spatially separated. An analogy with a system consisting of a mixture of gases in kinetic
theory is that contacts with similar orientations 6 each constitute an independent subsystem.
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The maximum entropy method postulates that the PDF P;(f|0) is determined by maximizing the entropy
(16) under the constraints that apply to the case considered. These constraints form the macroscopic in-
formation available about the system. A universal constraint is the normalisation condition (5).

The maximum entropy method will be used here to determine the conditional PDF P, (f,,, f;|6) for the
normal and tangential forces. Part of the derivation by Kruyt and Rothenburg (2002b) is repeated here to
make the current presentation self-contained. The maximization of information entropy will be performed
subject to the constraints formed by the given stress tensor (7) and the normalising condition (5) for
P (fn, f1|0). Hence these constraints do not involve the kinematics.

Using the method of Lagrangian multipliers, the PDF that corresponds to maximum information en-
tropy (16) is found to be exponential

Pl]t(fnyﬁ|9) — %emﬂ,ﬁ _ ﬁe[/li/‘lfnifn‘i»/lij//[ifl] (17)
where A,; and Z(0) are the Lagrangian multipliers associated with the stress constraint and the normalising
condition, respectively. To simplify the notation, some abbreviations are introduced

where 4, and 4, will in general depend on contact orientation. Then the PDF P, (fy, fi) can be written as
1
Pm(fh,f{|9) — Zef(ﬂ.nfnw.lfl) (19)

The marginal PDF P, for the normal force and the marginal PDF P, for the tangential force are obtained
by integration from Py,

ifn 1 e_(in—!lll)fn — e_(inJF/l)%)fn
Pn(fn) :/ Pnt(fnaft)dftzi a

W M

o 1 e*)%fle*/ln‘ft‘/# (20)

P(f) =/ Poi(fu, f1) dfa =7

fil/u n -

After some algebra it follows from (20) that 1= (1/2)[2u/(A} — 1227)], and hence the Lagrangian
multiplier Z associated with the normalising condition (5) becomes

2u
= el

n t
while the average normal and tangential force are given by

_ 24 - —2u%

- _ _ 22
heEser T en >

Note that the expression for the average tangential force given by Kruyt and Rothenburg (2002b) contains
an error. The expressions (22) for the averages f, and f; in terms of the coefficients 4, and /, can be inverted
to give expressions for /1, and /. in terms of the averages f, and f;

212 fa ) —2f;
Gy Ry Py )

The PDFs for the nondimensional normal force & and for the nondimensional tangential force # become

eltr — el—» olul=p1

PO="50 R =e (24)

where ¢ and # are defined in (13) and p is given in (14).
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Fig. 12. Theoretical PDF P: for the nondimensional normal force &, and theoretical PDF P, for the nondimensional tangential force #.
The latter is shown for various values of the parameter p as defined in (14).

These theoretical predictions are shown in Fig. 12. The PDF P; for the nondimensional force ¢ is only
shown for p = 0, since the results for other, realistic values of p are practically indistinguisable. In fact,
from a Taylor expansion it follows that for small p and finite ¢ and 5, we have

P:(&) =4& > +0(p>)  Py(n) =e "1+ 2pn] +O(p*) (25)

Hence the theoretical PDF P; for the normal forces does not depend strongly on friction coefficient. This
was also observed experimentally by Blair et al. (2001) and in the discrete element simulations of isotropic
assemblies by Kruyt and Rothenburg (2002b). This theoretical PDF P; for the nondimensional force ¢ was
also obtained by Coppersmith et al. (1996) from a lattice-type model.

The theoretical decay rate »; for the nondimensional normal force is r: = 2/(1 + |p|), while the decay
rate r, for the nondimensional tangential force is different for positive and negative tangential forces, i.e.
ry,=2/(1+p) for n>>1and r, =2/(1 — p) for n < —1. The discrete element simulations also show that
the decay rates r, are different for positive and negative #, see Fig. 9.

The PDF P: is qualitatively similar to those observed in the discrete element simulations for the isotropic
state and for the anisotropic states for 6§ = 0°. A difference with the results from the simulations is that the
probability density at ¢ = 0 is underestimated theoretically. The PDF P: for 6 = 90° from the simulations is
qualitatively different, since in the simulations the peak of the PDF is found at £ = 0.

The theoretical PDF P, is qualitatively similar to those observed in the discrete element simulations. It is
symmetrical with respect to # = 0 when p = 0. When p # 0, the PDF is no longer symmetrical.

5.1. Lagrangian multiplier

Here the Lagrangian multiplier A;; associated with the stress constraint (7) will be determined for the
case where the particles are disks, the assembly is anisotropic with contact density function S(60) given by
(10) and the stress tensor ¢;; in biaxial deformation is
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1
5P +a) 0
O'i/ = 1 (26)
0 5@ —q)
2
The corresponding form for the Lagrangian multiplier A;; is
Ay = D(1+E) 0 27)

0  D(1-E)

Using (18), (22), (27), f; = fun: + fit; and [; = I,n; for disks, it follows after some lengthy algebra from
the stress constraint (26), after linearization in E, that

ma L4+ —1a; N ac72%
p 1+ —ac L+ —ac,

After linearization in a. and ¢/p, it follows from (18), (22), (27) and (28) that the Fourier representations
of the group averages of the normal and tangential force are

o p Zp(Zg - ac> ~ —2u’p (2% - ac)

L(0) =2 ——= = cos2(60 — 0 0) =~ - sin2(0 — 6 29
) = e S eos 20— ) J(0) = sin2(0— ) (29)
or for the Fourier components as given in (11)
2p 2g—aC 22%—410
>~ _— o 30
fO mal, a 1—|—y2 ay u 1+’u2 ( )

Note that these results are consistent with the strength—anisotropy—force relation (12). It follows from (30)
that according to the maximum entropy method we have

a o
pals (31)
Note that a, signifies the contribution of the tangential forces to the shear strength ¢/p, see (11) and (12).
Results from discrete element simulations involving the friction coefficients ¢ = 0.1, u = 0.3 and u = 0.5
are used to study the evolution with shear strain &g of the ratio a,/a,, see Fig. 13. This ratio gradually
decreases until an asymptotic value is attained at larger strains. The values at large strain are compared
with the theoretical relation (31) in Fig. 13. It shows that the theoretical value is correct for u = 0.5, but that
it overestimates the ratio a/a, for lower friction coefficients. An accurate fit to the data is obtained by
at/an = ,LL/Z
Alternatively, one can obtain a relation for a, by assuming that at some orientation 0, the average
tangential force is fully mobilised, i.e. maxy{|£(0)|/f.(0)} = n. After some algebra it follows that the angle
6", at which the maximum is attained, satisfies tan26" = /(1 — a2)/a,. Finally, this results in

al:M1/1—ar21 (32)

The theoretical values of a, at large strain are compared to those observed from the discrete element
simulations in Table 1. This shows that the values of a, according to (32), i.e. based on the assumption of
fully mobilised average tangential force, greatly overestimate the values of a, obtained from the results of
discrete element simulations.
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Fig. 13. Evolution of a,/a, with shear strain &g for various friction coefficients x from discrete element simulations and comparison of
values of a;/a, at large strain between results from simulations and the theoretical relation (31).

Table 1
Comparison of theoretical results for a, with those from discrete element simulations at large strain for various friction coefficients u
n a, from simulation a, from relation (31) a, from relation (32)
0.1 0.020 0.003 0.095
0.3 0.061 0.034 0.278
0.5 0.090 0.092 0.465

5.2. Weak contacts

Radjai et al. (1998) proposed a division of contacts into “‘strong’ contacts with high normal forces and
“weak’ contacts with low normal forces. From results of computer simulations they observed that the
strong contacts and the weak contacts have quite distinct contact density functions. In particular, they
noted that the direction of anisotropy of the strong contacts is in the direction of the major principal stress,
while that of the weak contacts is in the direction of the minor principal stress. Since we have obtained a
theoretical expression for the PDF for the normal forces, it is possible to investigate this division theo-
retically.

The weak contacts are defined as those contacts at which the normal force is below a threshold, i.e.
< x(2p)/(mal,), where y is a nondimensional threshold parameter. Note that the factor (2p)/(maly) is
equal to the theoretical Fourier coefficient f; in (30). Similarly to the contact distribution function S(6) of
all contacts in the assembly, a contact distribution function s(6; y) for the weak contacts can be defined by

s(0; 7) AO = Probability (0 <O <O0+A0, f°<y 21’7 ) = 5(0) AH/ " Pu(fal0) dfa (33)
0

MA Ly

where the second equality follows from the definition of conditional probability.



N.P. Kruyt | International Journal of Solids and Structures 40 (2003 ) 3537-3556 3553

0.3 - - - 05
Slrlnulatlon, large strain Simulation, large strain
1

- Simulation,
peak strength

a(x) _
-Theory, large strain

-05

Simulation
' 4~ — — -Theory, peak strength
peak strength y.P g
o7 1 15 1 2 3 4

Fig. 14. Anisotropy of “weak’ contacts. Results from discrete element simulations with friction coefficient y = 0.5 at peak strength and
at large strain and comparison of theory with results from simulations.

In analogy to (10), the contact distribution function s(0; y) is represented by a Fourier series

1

s(0; ) = 5_[1 + ae(x) cos 2(0 — Oo)] (34)

Using a Taylor series expansion in a. and ¢/p, it follows after some lengthy algebra from (24), (29) and
(33) that the anisotropy o.(y) is given by

ac — o.(y) 292 29 g,

wag -2 35
G- = (142 0T (35)

IR

Note that o, = a.(y — 0) and that a.(y — o0) = a..

The theoretical prediction is compared with results of a discrete element simulation in Fig. 14. The
results of the present simulation are in qualitative agreement with those obtained by Radjai et al. (1998)
after noting that their (F) = fy/(2n) (see (11)). The theory predicts that the anisotropy becomes negative
for small values of y, which is also observed from the simulations. Note that a negative anisotropy o(y)
corresponds to the anisotropy of s(0,y) being in the direction of the minor principal stress. Hence the
salient qualitative characteristic of the weak contacts is predicted theoretically. Fig. 14 shows that the
theory overestimates the anisotropy at small forces and it underestimates the rate at which the overall
anisotropy a. is approached. This is ultimately related to deviations between the theoretical PDF for the
normal forces and the actual PDF observed in the discrete element simulations.

6. Discussion

The PDFs for the contact forces have been studied numerically and theoretically. It is observed that the
average forces depend significantly on contact orientation. Therefore the PDFs are also dependent on
contact orientation, and it is appropriate to consider the conditional PDFs for the contact forces given the
contact orientation. These conditional PDFs are studied numerically, using results from discrete element
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simulations of biaxial deformation of a large two-dimensional assembly of 200,000 disks, and theoretically
using a maximum entropy method.

As has been observed experimentally, numerically and theoretically for isotropic assemblies, the PDFs
also exhibit exponential tails for anisotropic assemblies. For contacts with orientations in the direction of
the minor principal stress, the shape of the PDF for the normal forces changes qualitatively from that in the
isotropic state. As discussed in Section 4, this difference is caused by the biaxial deformation mechanism,
i.e. on the kinematics of deformation. This deformation mechanism results in a reduction of coordination
number, i.e. in the disruption of contacts. The contacts that are broken are predominantly oriented in the
direction of the minor principle stress. For contact orientations in the principal stress directions the PDFs
for the tangential forces retain the same shape in comparison with that in the isotropic state, but they
become wider due to the biaxial deformation mechanism which leads to a wider range of tangential forces.
For other contact orientations, the PDF for the tangential forces is not symmetrical with respect to zero
tangential force. The PDFs for the nondimensional normal and tangential forces are approximately in-
dependent of strain beyond the elastic range, except for the PDFs for forces with contact orientations in the
direction of the minor principle stress.

The theoretical PDF for the normal forces is qualitatively similar to those observed in the simulations in
the isotropic state and in the anisotropic states for contact orientations in the direction of the major
principal stress. The major difference between simulations and theory is that the probability of small normal
forces is underestimated theoretically. The theoretical PDF for the tangential forces is qualitatively similar
to all PDFs observed in the simulations. This includes the asymmetry of the PDF around zero tangential
force when the group average tangential force does not equal zero and the different decay rates observed for
positive and negative tangential forces.

The maximum entropy theory also results in relation (31) between the components a; and a, in the
stress—force—fabric relation (12). This relation gives much better agreement with the results of the simu-
lations than relation (32) that is based on the assumption of fully mobilised group average tangential forces.
A further salient feature of the theory is that it qualitatively predicts the anisotropy of the weak contacts
being in the direction of the minor principle stress.

From experimental studies employing photoelastic materials (for example De Josselin de Jong and
Verruijt, 1969; Drescher and de Josselin de Jong, 1972; Oda and Konishi, 1974), it is well-known that force
chains arise in granular materials, which indicate spatial correlations between contact forces. It is not
possible to predict the occurrence of such force chains with the maximum entropy method, since it is as-
sumed in this theory that the contact forces are independent realisations of a random variable, i.e. spatial
correlations are absent.

The explanation given in Section 4 for the evolution of the shape of the PDFs is based on considerations
of the biaxial deformation mechanism, i.e. on the kinematics. The kinematics are coupled to the statics by
the contact constitutive relation (8) that involves the elastic parameters &, and ;.

Thornton and Antony (1998) showed on the basis of results of three-dimensional discrete element
simulations with fairly small isotropic assemblies that elastic parameters in their contact constitutive re-
lation influence the PDF for the nondimensional normal forces at identical confining hydrostatic stress.
Alternatively, they showed that for “soft” particles this PDF depends on the level of confining stress, while
for “hard” particles this dependence of this PDF on the stress level is small.

On the basis of dimensional analysis one finds that for two-dimensional isotropic assemblies under
hydrostatic confining stress ¢ and with the contact constitutive relation (8) considered, the PDF for the
nondimensional normal forces is given by a functional relation between nondimensional quantities of
the form P: = F (&, p, t, 6/{knRuvs } ki /kn, PSD). Here p is given by (14) and PSD denotes the shape of the
particle-size distribution. Note that for two-dimensional assemblies the quantity o/{k,Ra} is nondimen-
sional and that the theoretical result (24) is of the form P: = F(&, p). Hence dimensional analysis gives a
functional form that contains more nondimensional quantities (such as elastic parameters, confining stress
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and particle-size distribution) than the theoretical result (24), but the theoretical analysis yields a specific
functional form. The results of Thornton and Antony (1998) demonstrate that the extra nondimensional
quantity o/{k,Ray, } is important for soft particles (high value of o/{k,Rav,}), while for hard particles (low
value of ¢/{ky,Rav}) this quantity has a small influence.

It is reccommended to investigate further the effect on the PDFs for the forces of (i) the elastic component
of the contact constitutive relation, including the use of more realistic Hertzian-type models, and (ii) the
particle-size distribution.

In the present theoretical formulation the kinematics have not been considered. It is expected that a
more detailed theoretical description may be obtained by introducing additional constraints involving the
kinematics into the maximum entropy formulation, for example by prescribing a strain increment. This
obviously leads to greatly increased analytical complexity. If this complexity were to be resolved success-
fully, the resulting theory would give the evolution of the PDF for the contact forces in terms involving a
strain increment. Since the stress increment can be determined from the PDF for the contact forces, the
result will imply a micromechanical constitutive relation.
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